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Germany
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Abstract. A systematic comparison is given of the quantum reduction in the ordered spin
of quasi one-dimensional Heisenberg antiferromagnets as predicted by spin-wave theory and
as measured in ionic systems with known spin-wave parameters. Simple linear theory yields
a leading term [1/(20))In(C|J/J']y — % where further terms can be neglected for practical
purposes if |7’/ f| < 10~%; such expressions are listed for ferromagnetic and antiferromagnetic
square and triangular [attices of antiferromagnetic chains with zero anisotropy. For half-integer-
spin systems with £ < § < 2, excellent agreement with experiment is found over the range
1072 > [J'/J| > 10~* when a known correction for ‘kinematical interactions’ is applied. It
should thus be possible to identify covalency reductions in excess of 10%. For the § = 1
system CsNiCls, however, the measured spin seduction may indicate extra guantum fluctuations
related to the Haldane effect. From the susceptibility behavionr, the quantum ground state for
progressively smaller |J'/J] is argued to increasingly resemble a singlet scparated from other
states by an energy gap.

‘1. Introduction

The experimenter who wants to interpret a magnetic moment value measured on an
antiferromagnetic compound is faced with the task of separating covalency reduction from
zero-point quantum fluctuation effects. According to antiferromagnetic spin-wave theory
[1,2], the quantum reduction can be formulated as a reciprocal-space integral involving the
spin-wave dispersion, and in quasi-one-dimensional (1D) systems it may become arbitrarily
large. A numerical evaluation for such systems, however, is rendered difficult by the singular
nature of the integrand, and ready-to-use analytical results for quantitative experiment
analysis are not available in the literature. Moreover, a systematic test of the theoretical
prediction for quasi-iD systems that takes into account the body of experimental data
collected since 1975 seems to be missing. Early reviews [3] cited experimental evidence
for reduced moments in quasi-1D antiferromagnets, but questioned the prediction from spin-
wave theory, or paid no attention to quantitative aspects. - '

The present article aims to make more easily accessible, and to establish some trust in,
the spin-wave theoretical prediction of the zero-point spin reduction in quasi-1p Heisenberg
antiferromagnets. Thus, in the context of a brief review of the theoretical background
(section 2), an analytical treaiment of the reduction is given and explicit formulae are
listed for simple lattices. The prediction is then checked (section 3) against a compilation

1 Address for cotrespondence: Hahn-Meitner-Institut, Postfach 390128, D-1000 Berlin 39, Federal Republic of
Germany.
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of available measurements on ionic chain systems with known spin-wave dispersion
parameters, which calls for some discussion of contradictory data and data at variance with
spin~wave theory. Finally, in an attempt to shed light on the fluctuating quanium magnetic
ground-state (section 4), implications of spin-wave theory for the magnetic susceptibility
close to the limit of vanishing inter-chain coupling are considered.

2. Theory

For the Heisenberg spin Hamiltonian we use

=2 U8, — DY (S)? 1

{if) i

where the exchange sum runs over interacting spin pairs and || denotes an arbitrary
anisotropy direction. The spin positions are assumed to be on a Bravais lattice, and the
ordered-state configuration is assumed to be an antiferromagnetic spiralf, so that the spin
angle at site /; may be expressed as ko - #; in terms of a pitch vector ko. In an extended
zone scheme, the Holstein-Primakoff formalism then takes the Hamiltonian into [1)

Hio =Y Awfap + Y 3(Biafa’, + Biajaly) (2)
P X

where ;" and a; are Bose operators that create and annihilate spin waves of wavevector k,
Ap and B; may be readily written down in terms of Ji; and r; —r; (see table 1), and terms
higher than bilinear in i are neglected. This Hamiltonian yields the spin-wave energies
Er = (A? — |By[H)'/2, with all distinct modes following from folding the non-magnetic
Brillouin zone into the antiferromagnetic one. The resulting zero-point spin reduction is {1]

1 1 1 lAk
= — — —~1}dhdkd!
sso=z [ [ (5 ®

where (h, k, l) are the components of & in reciprocal-lattice coordinates (with respect to the
original Bravais lattice).

In table 1, A; and B, are listed for the four cases (referred to as SLF, SLAF, TLF, and
TLAF) of linear spin chains with antiferromagnetic exchange J < 0 being arranged on square
or triangular lattices (SL, TL} with ferromagnetic or antiferromagnetic inter-chain coupling,
J' > 0o J' < 0 (F, AF), The case of free chains (J' = 0) with a non-zero easy-axis
anisotropy D > 0 [4,5] is included for comparison. In the quasi-1D limit |J'}| < [J], the
aumerator Ay in the integrand determining the spin reduction (3} may be approximated by
=2J x 28, and A;/E; can then be written as (chains assumed along z)

—2J %28 1
VAT B A~ (B T+ cos@al) + p(h, K — cos(Zxd) + g (7, B)]
with 0 < p, g <« 1. In this limit, the intra-chain (i.e. {) integration yields}

@

As-~flf(11n 8 —l)dhdk (5)
"l b \m T a2

t Note that this includes simple two-sublattice order.

1 The integration leads to a complete elliptic integral of the first kind [6], which for p, g <« 1 can be replaced by
a logarithm and whose prefactor and argument can be simplified correspondingly.
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Table 1. The energies A; and B; of the linearized spin-wave Hamiltonian (2) and the resulting
Zero-point spin reduction ASp, for simple quasi-1p antiferromagnets with zero anisotropy and
for free chains with finite easy-axis anisotropy. St and TL denote square and triangular lattices of
chains; (&, &, [} and the ordering vectors kg refer to primitive tetragonal and primitive hexagonnl
lattices. u = cos(2n!), v = cos(Zxh) + cos(2wk) and w = coswh) + cos(2rk) + cos(Znh +

2rk).
Case o A /28 B /28 A8
/] l 1 r r 1 J 1 a ¥
sL, J' >0 0,0,3) -27+47-2Fv -2/ oo lnfdml - 5 + 0035 (' <17
5L, J <0 G LYy —ar—ar —2u-2r el —l+0,035a (4 < |TD
21222 . 27 J 2
T J >0 0,0,4y 27465 =2lw ~2Ju LWL —14-0023 ' <
’ T2 2 (3| 27T
J <0 (4,41 9 3 — ki —2u- 3y |2 l+ooso U<
TL, J' =< 3,3,2) —2J - — 5w w=szt'w ern31' -3 . [ < I}
F=0,D0>0 27 + D —2Ju L l1sl —Lb(D«m)
o : 2z Dl 2z

1 The additive numerical constants for the two SL cases are identical and may be expressed analytically as

(1/21) Tpg (2722 G2 f20.
® The result for free chains with easy-axis anisotropy differs from that given by Kubo [4] (and cited in [1]}, but
agrees with that by Montano e al [5] when their elliptic integral is replaced by a limiting logarithm,

For the simple cases mentioned, this leads to expressions of the type ASy =~
[1/Cx)IIn(C| T/ V) — -% which are also given in table 1. With the particular choice of
logarithmic terms taken there, equivalent to substituting mean valves of pik, k) and (A, k)
in (5), small additive corrections from the inter-chain modulation remnain that are afl but
negligible for practical purposes.

An analytical treatment thus furnishes simple general expressions for the zero-point spin
reduction AS in Heisenberg antiferromagnets near the 1D limit. Being based on lingar spin-
wave theory, (3), these are independent of the spin quantum number S (still, the quantum
effect AS/S properly vanishes on 5 approaching infinity). From (5), the leading logarithmic
behaviour is obviously universal, while our approximations ignore linear and higher order
terms in J'/J. Yet, for |J'/J| < 107? the analytical results virtually coincide with the exact
spin reduction (3), as may be seen for the SLAF case from figure 1 where the limiting formula
is depicted along with a numerical evaluation of the integral for |J//J| > 1072, Also shown
is the corresponding behaviour for the D > 0 case [5]. For most real chain systems, the
analytical expressions can therefore replace the cumbersome 3D numerical integration which
is complicated by the singular pature of the integrand. This difficulty should explain why
the SLAF numerical data of Ishikawa and Oguchi [2] for |J'/ 7| < 0.01 fall systematically
short of the SLAF analytical result from table 1.

Coupled spin chains with additional anisotropy or with second-neighbour interactions
between them can be dealt with in the same manner, usless a new ordered spin configuration
prevents the analytical diagonalization of the spin-wave Hamiltonian (this happens e.g. for
the TLAF case with easy-axis anisotropy {7]). For example, the decisive logarithm for SLF or
SLAF coupling combined with easy-axis (D > 0} anisotropy becomes In[16|J[/(4|J'|+ D)],
and for TLAF coupling with casy-plane (D < 0) anisotropy 1nf16|J|/G3|7'|G|J'|+ 1D [)/2].
It is seen that the effect of additional anisotropy is not dramatic if [D| < |J'], and that an
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Figure 1. Zero-point spin reduction from linear spin-wave theory for quasi-!D tetragonal
antiferromagnets with 7/ < 0 (full circles) and for free chains with easy-axis anisotropy D > 0
(empty circles); the straight slopes represent limiting analytical results from table 1. A spin-
dependent correction [2) for ‘kinematical interactions’ is illustrated for the J' < 0 case {(dotted
curves); it leads to good agreement with measurements on ionic compounds (table 2) if covalency
reductions up to 10% are allowed for (inset). The one outside point (2a) is from § = 1 CsNiCls.

easy-plane anisotropy together with J' = 0 yields an infinite spin reduction, reflecting its
inability to stabilize an ordering direction in free chains at T = 0. The remaining additive
correction here interpolates between the respective J'-only and D-only values given in table
1; for the easy-plane TLAF case it approaches +0.014 for [D| > |J'[.

The divergent logarithmic behaviour as J/ and D tend to zero looks grossly vophysical,
yet it comrectly indicates the failure of linear spin-wave theory for large spin deviations
from the assumed ordered state, and must be regarded as a useful rather than as a bad sign,
By incorporating in an approximate way the effect of ‘kinematical interaction’ terms from
the original Heisenberg Hamiltonian (1), which are neglected in the Holstein-Primakoff
treatment, Ishikawa and QOguchi [2], expanding on work by Herbert [2], for the SLAF case
obtained the improved spin reduction

ASen = ASin — (28 + D{AS) /(1 + ASi)™ ! — (ASi)¥*]  (6)

where A Sy, is the estimate (3) from linear spin-wave theory. This prescription renormalizes
any ASy, (which can easily exceed S for small spins) to below S, as it must be, and leads
to a vanishing ordered spin S — AS as J' and D go to zero. The same result can be derived
[8] for an arbitrary two-sublattice antiferromagnet} by the Green-function technique with

t In the following, we will ignore that an extension to non-collinear antiferromagnets is without verification, and
simply use {6} for TLAF systems as well.
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random-phase decoupling. The subtractive correction in (6) depends on the spin §; its effect
is illustrated for the SLAF case in figure 1 by dotted curves for § = % upto §= %

3. Experiment

For ionic chain antiferromagnets for which the required data are available [9-28], the
calculated spin reductions A Sy, from (3)t and A Siey from (6) are compared in table 2 with
experimental reductions ASg, from magnetic moment values u = gup(§ - AS) measured
by neutron diffraction (and extrapolated to T = 0 where necessary). Appropriate Landé
g-factors were used as listed. The exchange ratios |./°/J| involve parameters extracted via
linear spin-wave models, Ex = (A2 — | B;[%)!/2, from excitation energies directly observed
in inelastic neutron scattering, and thus incorporate quantum renormalization effects from
higher order terms omitted in the Hamiltonian (2). An exception is the compound K,FeF;s
[24-26], which shows undulating chains in an orthorhombic structure: here |J//J| has been
deduced from the measured intra-chain exchange J and Néel temperature T3y via the Oguchi
relation [29] for a SLF case. In spite of this shortcoming, KzFeFs is included in table 2
because of its unique position as a highly ionic chain compound with a large spin and
collinear magnetic order.

Table 2. Available experimental data on the zero-point spin reduction in ionic quasi-1p
antiferromagnets, AS.xpy, compared with the linear spin-wave prediction, A Sy,, and an improved
prediction [2] incorporating ‘kinematicat interactions’, ASyn. See the inset of figure 1 for a
piot of HSexp/S versus ASen/S where the systems are identified by the line numbers from this

table.
Systern (Type) 5 g wius ASep 1T ASin  ASe, Ref
i KCuFs {SLE) -% 217 0.49(7) 027 10x10"2 050 025 [9-11]
22 CsNiCl; (rear) 1 2,25 L0510y 053 17x10-2 048 037 [12-15)
2b : 60x107% 063 045 16}
32 CsVCls (TLAF) % 197 =12 09  27x 10 .12 078 {17,18]
b 291077 L05° 075 [19)

20 3.302¢ 085 33x107¥ 0628 0602 [24-26)
w20 3.3(3)b 085 22x10-3 o066 064 [27,28)

4  KyFeFs (sLe)X
5 CsMnBry  (TLAF)

BI[LArajin

¥ gnores an easy-axis anisotropy D/|J] = 3.8 x 1072 in compliance {15] with a small spin-flop field of = 20 kG.
® From the model of [19] with J/k = —169 K taken from [18).

¢ Includes the effect of easy-plane anisatropy, D/|J] = —5.7 x 1074,

4 The SLF model approximates an actual orthorhombic structure.

¢ Mdssbauer hyperfine field variation [25] used in extrapolating 4.2 K magnetic moment [24] to T = 0.

f Obtained from Ty ~ 10 K and J/k = —9.45 K via the Oguchi relation kTy =~ 2.18(5 + 1)(|J[)/' P42

8 Includes the effect of easy-axis anisotropy, D/|J1 = 2.8 x 1073, derived [26] from a spin-flop field of 37 kG.
" Brror as given for the 4.5 K data used [27] in extrapolating to T = 0.

i Includes the effect of easy-plane anisotropy, D/|J| = —1.6 x 1072,

The spin-wave energies for the SLF system KCuF; reveal [11] an anisotropy that is
negligible compared to J’, whereas for TLAF CsMnBrs; [28] an appreciable easy-plane
term is found, which has been included in computing AS. For K,FeFs, an easy-axis
anisotropy D & J/ derived from the measured spin-flop field [26] has been incorporated in
the computation.

t The full integral (3) has been used where |J'/J] 3 10=2. For |J'/J| = 1.7 x 10~2 in TLAF CsNiCl3 {table 2),
for instance, the approximation {5) underestimates ASy, by about 0.013, and AS, (6) by about 0.007.
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Discrepant anisotropy parameters have been reported [18~20] for TLAR CsVCls,
springing from somewhat different interpretations of basically compatible spin-wave
dispersion data (noted [18, 20] deviations from the neutron scattering cross section predicted
by linear theory should not affect the parameters derived). Two models, one [18] with
negligible anisotropy and one [19] with a noticeable easy-plane term D =~ 2J', are
represented in table~2; as the intra-chain exchange could not be determined by the latter
authors, the value J/k = —169 K of the former, well confirmed recently [21], has been
taken for both. In spite of the anisotropy being taken into account, the calculated A Sy,, and
particularly ASgyy, are closely similar, Another model with a much larger D &~ 12J7 has
been discussed [20] without direct evidence for the flat upper magnon branch impliedt, and
is ignored here. Also, the moment value i = 1.9 up of [23], corresponding to ASeyp = 0.55,
from the context of the present compilation (table 2) turns out to be implausible.

Of special interest is the integer-spin TLAF system CsNiClz for which standard spin-wave
theory apparently fails to describe the measured inter-chain excitations {14, 16}, and whence
the derived ratio |J’/J} depends on the (inter-chain) wavevector used for fittingl. Two
maodels, relying on the magnetic zone boundary {0, 0, -%) [14] and zone centre ky = (-é, —;—, %)
[16], are represented in table 2. In the first model, an appreciable easy-axis anisotropy
D/|J| & 3.8 x 102 was originally introduced to achieve agreement at the zone centre,
but the measured spin-flop field value [15] as well as neutron polarization analysis [16]
require that this be replaced by a much smaller D/|J| < 2 x 10~3, which can be neglected
here. The failure of spin-wave theory for CsNiCl; has been attributed [31] to the Haldane
excitation gap [32, 33] of free § = 1 antiférromagnetic chains also affecting the ordered state
of weakly coupled chains. Interestingly, even though the observed energies are much better
reproduced by the first spin-wave model, the agreement with experiment of the reduction
A Sy calculated from the second model fits in better with the other systems of table 2.

Setting aside the problematic case of S = 1 CsNiCls, an inspection of table 2
nevertheless shows that the linear prediction ASi, does not correlate well with ASep,
the experimental reduction being significantly exceeded for KCuF; and CsVClz (as well
as for the second model of CsNiCly). In contrast, the improved estimates ASe, fall
consistently short of AS. by small amounts of up to = 10% in § (inset of figure 1),
which correspond to the effect of covalency expected in transition-metal halides [34]. As
the uncertainties from the error bounds quoted for the magnetic moments y are of the
same order, and as the moment values may be affected further by assumptions about the
magnetic form factors, more detailed conclusions about covalency cannot be drawn from
the data. It is clear, however, that the improved spin-wave estimate gives a satisfactory
description of the experimental zero-point spin reduction over a wide range of exchange ratio
1072 > {J'/J] > 107* and spin 3 < S < 3. A calculation of AS,, may thus be applied
to identify cases of substantial covalency among quasi-10 Heisenberg antiferromagnets, as
was recently reported [35] for the chalcogenide TIFeS; (/= 40% covalency reduction).

4. Susceptibility
In view of the measured spin reductions AS., in table 2, there can be no doubt about

1 The large anisotropy [20] would imply that spin ‘condensation’ into the anisotropy plane [30} (k7 =
28(8 + 1D J1D)?) appears around T. = 66 K, in contradiction to the measured [17,22) susceptibility
(T £ 18 K); compare T™MMC {30] and CsMnBrjy [27].

} The parameters employed in an early explanation of ASexp by Montano et ai [5], a negligible J " and a large
easy-axis D, are unacceptable today.
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the importance of zero-point quantum fluctuation in quasi-1D antiferromagnets. Since the
fluctuations must be interpreted [1] as comrections to the ordered ground state used as the
starting point of spin-wave theory, large deviations are impiied fromi the very foundation on
which the calculated spin reductions rest. In this light, the predictive power of spin-wave
theory for progressively smaller inter-chain coupling, as demonstrated by the improved
estimates AS., for reductions up to ~ 50%, seems remarkable. In order to further
characterize the quantum ground state for small |J'/J|, let us therefore turn to other
consequences of spin-wave theory for Heisenberg antiferromagnets.

According to standard antiferromagnetic spin-wave theory [1, 36], zero-point fluctuations
cause a reduction in the perpendicular static susceptibility, xi = M, /Hg, at T = 0
in proportion with the reduction in the ordered spin; the effect occuring relative to the
molecular-field result ¥ = N(gup)®/8]J| where J incorporates quantum renormalization
(J' neglected). Thus, for increasing fluctuation in quasi-1D systemns, the ordered-state
xL(T = Q) can be expected to approach a value well below x° (if not zero), while the
disordered state of free ‘gapless’ half-integer-spin chainst shows [37] a finite x (0} close to
% x5°. Figure 2 qualitatively reconciles such a shrinking x. o § — AS with the requirement
that at any T > 0 the susceptibility for decreasing [J//J| must ultimately approach the
free-chain result. Here, the peaked susceptibility curve estimated for free 5§ = % chains
[3,37], the Oguchi relation for SL systems, kTy/[S(S + D|J]] = 2.1|J'/J|'7? (with S = %)
{29], and a monotonic F-square like behaviour of x| and x, below Ty as given by two-
sublattice spin-wave theory [1,36] have been used as quantitative ingredients. It is seen
that the decreasing x, (T = Q) together with the monotonic variation of x (T") eventually
necessitates a matching depression in the paramagnetic susceptibility immediately above
n. .
For many quasi-1D antiferromagnets, the observed behaviour above 7y confirms this
non-rigorous reasoning from spin-wave theory. A susceptibility depression below the
free-chain curve is hinted at for K,FeFs [24] and CsMnBr; {27] with spin reductions
around = 25%, and becomes unmistakable for CsVCls [17,22) (as well as integer-spin
CsNiCl; [12]) where the reduction reaches = 50% (table 2)f. The eifect may be easily
recognized from an incompatibility of the xuax/x(0) ratios with those of ‘gapless’ free
chains, which range [3,37] between 1.45 for § = % and 1.20 for classical spins. As an
example, the CsVCls susceptibility from [22], as measured perpendicular to the chain axis,
is reproduced in figure 2, where the data have been corrected for a core contribution of
a2 =1 x 10™* cm® mol~! and an estimated Van-Vleck term of &~ +2.5 x 10~* cm?® mol™,
and where a ‘bare’ exchange, J/k = —130 K, and g = 1,97, has been used for the ordinate
and abscigsa scales. Obviously, the depression must be related to the presence of inter-
chain magnetic correlations above Ty, and in the case of a strongly fluctuating ordered
state, as for CsVCls, it appears from the susceptibility that the incipient order in quasi-1D
antiferromagnets is heralded by precursors of zero-point fluctuation.

When |J//J) decreases to zero, the growing depression below the free-chain curve
in figure 2 implies a final discontinuity in the low-temperature susceptibility immediately
above Ty indicating that the strongly fluctuating ordered state fundamentally differs from
the free-chain disordered ground state, in spite of the decay of the ordered magnetic

t Though x(0) is exactly known [37] for § = % and classical spin chains only, similar non-zero values are
expected for any half-integer 5, whereas for § = 1 a singlet pround state with a Haldane excitation gap [33] of
72 0.41|2J| implies x (1) = 0.

{ For the compound KCuFs from table 2, the entire low-temperature susceptibility [9] is masked by paramagnetic
contributions, ‘
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Figure 2. Expected behaviour of the perpendicular and paraliel static susceptibilities below
T (dotted) and their continuation above Ty (broken) as [J'/J| in quasi-1p antiferromagnets
approaches zero, quantitatively based on relations for tetragonal § = % systems. The crosses
represent data [22] from hexagonal CsVCly above Ty they are corrected for core and Vao-
Vleck contributions and plotted for J/k = —130 K and g = 1.97. An overview of the § = %
free-chain curve (J' = 0) appears in the inset.

moment. This can be undeistood from the fact that long-range magnetic order in free
chains is destroyed [32] by ‘topological soliton’ excitations (i.e. domain walls) rather
than by collective magnons. Close to the |J'/J] = 0 limit, the expected susceptibility
curve bears a marked resemblance to that shown by singlet ground-state systems, such as
quantum antiferromagnetic dimers or free § = 1 (Haldane) chains, the final discontinuity
being reminiscent of the closing of the singlet-triplet gap in dimerized quantum spin chains
becoming uniform [38]. By analogy, one might conclude that, as J' — 0, the magnetic
ground state increasingly behaves like a singlet with a decreasing finite excitation gap.

As the ground state of quasi-iD antiferromagnets deviates more and more from the
ordered state underlying the linearized spin-wave Hamiltonian (2), the emergence of new
excitations, lost in the Holstein-Primakoff treatment, is a possibility to be considered. The
resemblance to a singlet state with a finite excitation energy in particular suggests that, as
for the case of weakly coupled § = 1 chains [31], longitudinal gap modes might appear in
addition to the conventional transverse spin waves.

5. Conclusions

In conclusion, spin-wave theory is seen to provide an adequate quantitative description of the
zero-point spin reduction in quasi-iD half-integer-spin antiferromagnets when ‘kinematical
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interactions’ are taken intc account in the manner of Ishikawa and QOguchi [2]. The present
analytical treatment should facilitate the application for the experimentalist, and has aiready
proved useful in confirming a substantial covalency reduction in the chain chalcogenide
TlFeS;. However, further data on ionic systems (such as an error bound on the CsVCl;
magnetic moment or a spin-wave determination of J'/J and D/J for K;FeFs) would be
worth collecting to strengthen the case.

A marginal but possibly significant deviation is found for the integer-spin system
CsNiCl;. While the exchange ratio |J'/J| = 1.7x 1072 reasonably accounts for the observed
spread of inter-chain magnon energies, it leaves 16(4)% of the measured spin reduction to be
explained by covalency, rather than the 6-10% typical of the other halides. Corroborating
the known failure of standard spin-wave theory for the inter-chain excitations, this may
point to additional quantumn fluctuations related to the occurrence of a singlet ground state
in free § = | chains. A theoretical estimate of this effect would be useful.

Finally, the qualitative behaviour of the magnetic susceptibility expected from spin-wave
theory for quasi-1D antiferromagnets is noted to conform with experiment. For decreasing
inter-chain coupling, a growing depression below the susceptibility of free half-integer-spin
chains at low temperatures implies that the fluctuating magnetic ground state increasingly
resembles a singlet separated from other states by an energy gap.
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