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Zero-point fluctuation in quasi one-dimensional 
antiferromagnets: theory and experiment 

D Welzt 
lnstitut fir Physik, UniveniW Main% Postfach 3980, D-6500 Main& Federal Republic of 
-Y 

Received 23 September 1992, in final f a n  21 January 1993 

Abstract. A systematic comparison is given of the quantum reduction in the ordered spin 
of quasi one-dimensional Heisenberg antifemmagneis as predicted by spin-wave themy and 
as m u r e d  in ionic systems with known spin-wave panmeters. Simple linear theory yields 
a leading term [l/(?~r)]ln(CIJ/J'l) - 1 where further terms can be neglected for practical 
purposes if IJ'/Jl < IO-*; snch expressions are listed for ferromagnetic and antifmrmgnetic 
square and triangular lattices of antiferromagnetic chains with zero anisotmpy. For half-integer- 
spin systems with 6 < S < a. excellent agreement with experiment is found over the range 

when a known conection for 'kinematical interactions' is applied. It 
should thus be possible lo identify covalency reductions in excess of 10%. For the S = 1 
system CsNiC13, however, the measured spin reduction may indicate exm quantum fluctuations 
related to the Haldane effect. From the susceptibili behaviour, the quantum ground state for 
progressively smaller l J ' / J [  is argued to increasingly resemble a singlet separated from other 
states by an energy gap. 

> IJ'/JI > 

1. Introduction 

The experimenter who wants to interpret a magnetic moment value measured on an 
antiferromagnetic compound is faced with the task of separating covalency reduction from 
zero-point quantum fluctuation effects. According to antiferromagnetic spin-wave theory 
[1,2], the quantum reduction can be formulated as a reciprocal-space integral involving the 
spin-wave dispersion, and in quasi-one-dimensional (ID) systems it may become arbitrarily 
large. A numerical evaluation for such systems, however, is rendered difficult by the singular 
nature of the integrand, and ready-to-use analytical results for quantitative experiment 
analysis are not available in the literature. Moreover, a systematic test of the theoretical 
prediction for qUaSi-lD systems that takes into account the body of experimental data 
collected since 1975 seems to be missing. Early reviews [3] cited experimental evidence 
for reduced moments in quasi-ID antiferromagnets, but questioned the prediction from spin- 
wave theory, or paid no attention to quantitative aspects. 

The present article aims to make more easily accessible, and to establish some mst in, 
the spin-wave theoretical prediction of the zero-point spin reduction in quasi-10 Heisenberg 
antiferromagnets. Thus, in the context of a brief review of the theoretical background 
(section Z), an analytical treatment of the reduction is given and explicit formulae are 
listed for simple lattices. The prediction is then checked (section 3) against a compilation 

t Address for correspondence: Hahn-Meitner-Institut, Postfach 390 128, D-I000 Berlin 39. Federal Republic of 
Germany. 
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of available measurements on ionic chain systems with known spin-wave dispersion 
parameters, which calls for some discussion of contradictoIy data and data at variance with 
spin-wave theory. Finally, in an attempt to shed light on the fluctuating quantum magnetic 
ground-state (section 4), implications of spin-wave theory for the magnetic susceptibility 
close to the limit of vanishing inter-chain coupling are considered. 

2. Theory 

For the Heisenberg spin Hamiltonian we use 

71 = -2 JijSiSj - D c(S!)’ 
{ i j )  i 

where the exchange sum runs over interacting spin pairs and 11 denotes an arbitrary 
anisotropy direction. The spin positions are assumed to be on a Bravais lattice, and the 
ordered-state configuration is assumed to be an antiferromagnetic spiralt, so that the spin 
angle at site ri may be expressed as ko . ri in terms of a pitch vector ko. In  an extended 
zone scheme, the Holstein-Primakoff formalism then takes the Hamiltonian into [l] 

where a: and a; are Bose operators that create and annihilate spin waves of wavevector k , 
Ax and BX may he readily written down in terms of Ji, and rj - ri (see table I), and terms 
higher than bilinear in U: are neglected. This Hamiltonian yields the spin-wave energies 
Ek = (A: - IBk1*)’/’, with all distinct modes following fiom folding the non-magnetic 
Brillouin zone into the antiferromagnetic one. The resulting zero-point spin reduction is [ I ]  

where (h, k ,  1) are the components of k in reciprocal-lattice coordinates (with respect to the 
original Bravais lattice). 

XAF) of linear spin chains with antiferromagnetic exchange J < 0 being arranged on square 
or triangular lattices (SL, TL) with ferromagnetic or antiferromagnetic inter-chain coupling, 
J’ > 0 or J‘ c 0 (F, AF). The case of free chains (J’ = 0) with a non-zero easy-axis 
anisotropy D > 0 [4,51 is included for comparison. In the qUaSi-lD limit IJ‘I < IJI,  the 
numerator Ax in the integrand determining the spin reduction (3) may be approximated by 
-25 x 2S, and Ak/Ek can then be written as (chains assumed along z )  

d(Ai + I&I)(Ak - IBkkl) - J[1 -I- COS(k1) + P ( k  k)l[l - COS(2zl) + q ( k  k)l 
with 0 < p,  q << 1. In this limit, the intra-chain (i.e. 1 )  integration yieldst 

h table 1, Ak and Bk listed for the four CaSeS (referred to as SLF, SLAF, TLF, and 

(4) 
1 - -25 x 2 s  

t Note that this includes simple two-sublattice order. 
$ The integration leads lo a complete elliptic integral of lhe first kind [6], which for p,  q < I can k replaced by 
a logarithm and whose prehclor and argument can be simplified correspondingly. 



Zero-point fluctuation in antiferromagnets 3645 

Table 1. The energies AX and Bx of the linearized spin-wave Hamiltonian (2) and the resulting 
m - p o i n t  sph reduction A& for simple quasi-ID antiferromagnets with zero anisotropy and 
for free chains with finite my-axis anisotropy. SL and n denote square and triangular lattices of 
chains; (h, k ,  I )  and the ordering vectors ko refer to primitive tetragonal nnd primitive hexagonal 
lattices. U = ws(Znl), U = m ( 2 r h )  + cos(2rrk) and w = m s e h )  + cos(2nk) + ms(2rrh t 
2nk). 

SL, J ’ > O  (O,O,i) - 2 J t 4 J ’ - Z J ’ v  -2Ju 

sh J‘ < 0 ( f ,  $ >  f) -2J -45’ 

n, I’ > 0 ( O , O ,  f) -25 t 6J‘- 21‘10 -2Ju 

I 16J I n , J ‘ c O  (5  ’ 1) - 2 J - 3 J ’ - $ I ’ w  - 2 J u - q J ’ w  -In - --tO.O50(IJ‘I<lJ1) 
. 3 *  2 Zn 1 3 J I l  2 

J’ = 0. D > 0 -2J + D -2Jrr 

* The additive numerical co~lstants for the hvo SL cases are identical and may be appressed analytically as 
(I /&) X:nsnP-”P)12/~. 

The result for free chains with easy-axis anisotropy differs from that given by Kubo L41 (and cited in [11). but 
agrees with that by Montan0 er nl [5] when their elliptic inteegnl is replaced by a limiting logarithm. 

For the simple cases mentioned, this leads to expressions of the type A& % 

[l/(Zx)]ln(CIJ/J’I) - $ which are also given in table 1. With the particular choice of 
logarithmic terms taken there, equivalent to substituting mean values of p ( h ,  k )  and q(h, k )  
in (S), small additive corrections from the inter-chain modulation remain that are all but 
negligible for practical purposes. 

An analytical treatment thus furnishes simple general expressions for the zero-point spin 
reduction AS in Heisenberg antiferromagnets near the ID limit. Being based on linear spin- 
wave theory, (3), these are independent of the spin quantum number S (still, the quantum 
effect ASIS properly vanishes on S approaching infinity). From (5). the leading logarithmic 
behaviour is obviously universal, while our approximations ignore linear and higher order 
terms in J ‘ / J .  Yet, for IJ’/JI < lo-’ the analytical results virtually coincide with the exact 
spin reduction (3), as may be seen for the SLAP case from figure 1 where the limiting formula 
is depicted along with a numerical evaluation of the integral for IJ’/JI 2 lo-’. Also shown 
is the corresponding behaviour for the D > 0 case [5 ] .  For most real chain systems, the 
analytical expressions can therefore replace the cumbersome 3D numerical integration which 
is complicated by the singular nature of the integrand. This difficulty should explain why 
the SLAF numerical data of Ishikawa and Oguchi [Z] for IJ’/JI < 0.01 fall systematically 
short of the SLAP analytical result from table 1. 

Coupled spin chains with additional anisotropy or with second-neighbour interactions 
between them can be dealt with in the same manner, unless a new ordered spin configuration 
prevents the analytical diagonalization of the spin-wave Hamiltonian (this happens e.g. for 
the TLAP case with easy-axis anisotropy [7]). For example, the decisive logarithm for SLF or 
SLAF coupling combined with easy-axis ( D  > 0) anisotropy becomes ln[161J1/(41J’l+ D ) ] .  
and fornmcoupling with easy-plane (D < 0) anisotropy ln[161J1/(31J’I(31J‘1+1D1))’~21. 
It is seen that the effect of additional anisotropy is not dramatic if ID1 < 11’1, and that an 
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I I 
1.21 

0.4 - 

0.2 - . - SL, J’<o 

1 0 ’  1 o2  i o 3  i o 4  

J/J’ or 41JI/D 

Figure I. am-point spin reduction from linear spin-wave theory for quasi-io tetragonal 
antiferromagnets with 3‘ c 0 (full circles) and for free chains with easy-axis anisob’opy D > 0 
(empty circles), the straight slops represen1 limiting analyticd results fmm table 1. A spin- 
dependent correction [Z] for %nemat id  interactions’ is illustrated for the I‘ c 0 c a ~ e  (dotted 
curves); it leads to good agreement with measwements on ionic compounds (IaLde 2) if c o v a l ~ ~ c y  
reductions up lo 10% are allowed for (inset). The one outsidc poinl(2a) is from S = I CsNiCI,. 

easy-plane anisotropy together with J‘ = 0 yields an infinite spin reduction, reflecting its 
inability to stabilize an ordering direction in free chains at T = 0. The remaining additive 
correction here interpolates between the respective J‘-only and D-only values given in table 
1: for the easy-plane ?ZAF case it approaches C0.014 for ID1 >> IJ’I. 

The divergent logarithmic behaviour as J‘ and D tend to zero looks grossly unphysical, 
yet it correctly indicates the failure of linear spin-wave theory for large spin deviations 
from the assumed ordered state, and must be regarded as a useful rather than as a bad sign. 
By incorporating in an approximate way the effect of ‘kinematical interaction’ terms from 
the original Heisenberg Hamiltonian (I), which are neglected in the Holstein-Primakoff 
treatment, Ishikawa and Oguchi [2], expanding on work by Herbert [2], for the SLAF case 
obtained the improved spin reduction 

AS,. = ASii. - (2s + I)(ASfi,)ZS+i/[(l + ASfin)ZSti - (6) 
where ASii. is the estimate (3) from linear spin-wave theory. This prescription renormalizes 
any AS,, (which can easily exceed S for small spins) to below S, as it must be, and leads 
to a vanishing ordered spin S - A S  as J‘ and D go to zero. The same result can be derived 
[8 ]  for an arbitrary two-sublattice antiferromagnett by the Green-function technique with 

t In the following, we will ignore that an exlension IO non-collinear antiferromagnets is withour verification. and 
Simply use (6) for TLAF systems as well 
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random-phase decoupling. The subtractive correction in (6) depends on the spin S; its effect 
is illustrated for the SLAF case in figure 1 by dotted curves for S = $ up to S = i. 

3. Experiment 

For ionic chain antiferromagnets for which the required data are available [9-281, the 
calculated spin reductions AS,. from (5)t and ASxn from (6) are compared in table 2 with 
experimental reductions ASwp from magnetic moment values p = gpB(S - AS) measured 
by neutron diffraction (and extrapolated to T = 0 where necessary). Appropriate Land6 
g-factors were used as listed. The exchange ratios IJ'/JI involve parameters extracted via 
linear spin-wave models, E k  = (A: - l&l2)'/*, from excitation energies directly observed 
in inelastic neutron scattering, and thus incorporate quantum renordimtion effects from 
higher order terms omitted in the Hamiltonian (2). An exception is the compound KzFeFs 
[24-261, which shows undulating chains in an orthorhombic smchue: here IJ'/JI has been 
deduced from the measured intra-chain exchange J and N&l temperature TN via the Oguchi 
relation [29] for a SLF case. In spite of this shortcoming, KzFeFs is included in table 2 
because of its unique position as a highly ionic chain compound with a large spin and 
collinear magnetic order. 

Table 2. Available experimenhl data on the Zero-point spin reduction in ionic qUaSi-iD 
antiferromagnets. ASap. compared with the linear spin-wave prediction. A h ,  and an improved 
prediction [2] incarporating 'kinematical interactions'. ASnn. See the inset of figure 1 for a 
plot of AS..,/S verms hS,./S where the system are identified by the line numbers from this 
table. 

System (Type) S g I*/llB AScxp IJ'IJI ASh AS,. Ref. 

I KCuF3 ( S G )  1 2.17 0.49(7) 0.27 1.0 x lo-' 0.50 0.25 [9-11] 
2a CsNiCl3 (TLAF) 1 2.25 1.05(10) 0.53 1.7 x lo-' 0.48' 0.37' [12-151 
2b 6.0 x lo-? 0.63 0.45 [I61 
3a cSVc13 ( T U F )  f 1.97 1.2 a 0 . 9  2.7 x IO4 1.12 0.78 [17,18] 
3b 2.9 x 1.05' 0.75' [I91 
4 KzFeFs (SLF)~  % Z , O  3.3(2)c 0.85 3.3 x 0.62s 0.60s [24-26] 
5 CsMnBr3 (w) 2 sz 2.0 3.3(3)b 0.85 2.2 x 0.66' 0.64' r27.281 

Ignores an easy-axis anisotropy D/lJI  = 3.8 x 
From the model of [I91 with J / k  = -169 K taken from [181. 

E Includes the effect of easy-plane anisotropy. D/I JI = -5.7 x lo-'. 
* The sw model approximates an actual orthorhombic smchxe. 

M6sssbauer hyperfine field variation [U] used in extrapalating 4.2 K magnetic moment [24] to T = 0. 
'Obtained from TN = IO K and J / k  = -9.45 K via the Oguchi relation kTN =Z.IS(S + l)(lJlIJ'l)'''. 
8 Includes the effect of easy-axis anisohopy. D/I JI = 2.8 x 

i Includes the effect of easy-plane anisotropy, D/lJI  = -1.6 x IO-'. 

in compliance [15] with a small spin-flop field of % 20 kG, 

derived [26] from a spin-flop field of 37 kG. 
Error as given for the 4.5 K data used [27] in extrapolating to T = 0. 

The spin-wave energies for the SLF system KCuF3 reveal [ I l l  an anisotropy that is 
negligible compared to J', whereas for TLAP CsMnBr3 [28] an appreciable easy-plane 
term is found, which has been included in computing AS. For K*FeFS, an easy-axis 
anisotropy D FX J' derived from the measured spin-flop field [26] has been incorporated in 
the computation. 

t The full integral (3) has been used where lJ ' /J l  2 IO-'. For IJ'/Jl = 1.7 x lo-' in TLAF CsNiU, (table 2). 
for instance, the approximation ( 5 )  underestimates ASh  by about 0.013, and ASm. (6) by about 0.007. 
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Discrepant anisotropy parameters have been reported [18-201 for TLAP CsVCI3, 
springing from somewhat different interpretations of basically compatible spin-wave 
dispersion data (noted [IS, 201 deviations from the neutron scattering cross section predicted 
by linear theory should not affect the parameters derived). Two models, one [IS] with 
negligible anisotropy and one 1191 with a noticeable easy-plane term D U', are 
represented in table-2; as the intra-chain exchange could not be determined by the latter 
authors, the value J/k = -169 K of the former, well confirmed recently [21], has been 
taken for both. In spite of the anisotropy being taken into account, the calculated A&,, and 
particularly AS,,, are closely similar. Another model with a much larger D w 125' has 
been discussed [20] without direct evidence for the Rat upper magnon branch impliedt, and 
is ignored here. Also, the moment value p = 1.9 ps of [23], corresponding to ASwp = 0.55, 
from the context of the present compilation (table 2) turns out to be implausible. 

Of special interest is the integer-spin TZAF system CsNiCls for which standard spin-wave 
theory apparently fails to describe the measured inter-chain excitations [14,16], and whence 
the derived ratio IJ' /JI  depends on the (inter-chain) wavevector used for fitting$. Two 
models, relying on the magnetic zone boundary (0, 0, f) [14] and zone centre ko = (4, i, i) 
[16], are represented in table 2. In the first model, an appreciable easy-axis anisotropy 
D/lJI M 3.8 x was originally introduced to achieve agreement at the zone centre, 
but the measured spin-flop field value [15] as well as neutron polarization analysis [16] 
require that this be replaced by a much smaller D/lJI < 2 x low3, which can be neglected 
here. The failure of spin-wave theory for CsNiCl3 has been attributed [31] to the Haldane 
excitation gap [32,33] of free S = 1 antiferromagnetic chains also affecting the ordered state 
of weakly coupled chains. Interestingly, even though the observed energies are much better 
reproduced by the first spin-wave model, the agreement with experiment of the reduction 
AS,, calculated from the second model fits in better with the other systems of table 2. 

Setting aside the problematic case of S = 1 CsNiCls, an inspection of table 2 
nevertheless shows that the linear prediction ASK. does not correlate well with AS,,, 
the experimental reduction being significantly exceeded for KCuF3 and CsVC13 (as well 
as for the second model of CsNiCl3). In contrast, the improved estimates AS,. fall 
consistently short of ASup by small amounts of up to X 10% in S (inset of figure I), 
which correspond to the effect of covalency expected in transition-metal halides [34]. As 
the uncertainties from the error bounds quoted for the magnetic moments p are of the 
same order, and as the moment values may be affected further by assumptions about the 
magnetic form factors, more detailed conclusions about covalency cannot be drawn from 
the data. It is clear, however, that the improved spin-wave estimate gives a satisfactory 
description of the experimental zero-point spin reduction over a wide range of exchange ratio 
lo-* > IJ'/JI > IO4 and spin 4 < S < 5. A calculation of AS,, may thus be applied 
to identify cases of substantial covalency among quasi-ID Heisenberg antiferromagnets, as 
was recently reported [35] for the chalcogenide TlFeSz ( X  40% covalency reduction). 

4. Susceptibility 

In view of the measured spin reductions AS,, in table 2, there can be no doubt about 

t The large anisotropy [ZO] would imply that spin 'condens?hon' into the anisotropy plane 1301 (kT, Fs: 
ZS(S + I)(IJl101)'/2) appears around T, ~ i :  66 K, in coneadiction lo the measured [11,22] susceptibility 
(& 6 18 K); compare TMMC [30] and CsMnBq [271. 
$ The panmeters employed in an early explanation of ASexp by Montan0 et a1 [SI, a negligible J' and a large 
wy-axis D, are unacceptable today. 
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the importance of zero-point quantum fluctuation in quasi-ID antiferromagnets. Since the 
fluctuations must be interpreted [ l ]  as corrections to the ordered ground state used as the 
starting point of spin-wave theory, large deviations are implied from the very foundation on 
which the calculated spin reductions rest. In this light, the predictive power of spin-wave 
theory for progressively smaller inter-chain coupling, as demonstrated by the improved 
estimates AS,, for reductions up to 50%. seems remarkable. In order to further 
characterize the quantum ground state for small I J ' / J [ ,  let us therefore turn to other 
consequences of spin-wave theory for Heisenberg antiferromagnets. 

According to standard antiferromagnetic spin-wave theory [ 1,361, zero-point fluctuations 
cause a reduction in the perpendicular static susceptibility, XI = M,/HE, at T = 0 
in proportion with the reduction in the ordered spin; the effect occuring relative to the 
molecular-field result ,yy = N(gp&/8(  JI where J incorporates quantum renormalization 
(J' neglected). Thus, for increasing fluctuation in qUaSi-lD systems, the ordered-state 
XI(T = 0) can be expected to approach a value well below ,yF (if not zero), while the 
disordered state of free 'gapless' half-integer-spin chainst shows 1371 a finite ~ ( 0 )  close to 
$xy. Figure 2 qualitatively reconciles such a shrinking XI. cx S- AS with the requirement 
that at any T > 0 the susceptibility for decreasing [J'/.Il must ultimately approach the 
free-chain result. Here, the peaked susceptibility curve estimated for free S = 4 chains 
[3,371, the Oguchi relation for SL systems, ~TN/[S(S+ 1)1J11% 2.11J'/Jl'p (with S = i) 
[29], and a monotonic T-square like behaviour of and XI. below TN as given by two- 
sublattice spin-wave theory [1,36] have been used as quantitative ingredients. It is seen 
that the decreasing XI(T = 0) together with the monotonic variation of XI(T) eventually 
necessitates a matching depression in the paramagnetic susceptibility immediately above 
TN . 

For many quasi-ID antiferromagnets, the observed behaviour above TN confirms this 
non-rigorous reasoning from spin-wave theory. A susceptibility depression below the 
free-chain curve is hinted at for KzFeFs [24] and CsMnBr3 [27] with spin reductions 
around % 25%. and becomes unmistakable for CsVCI3 [17,22] (as well as integer-spin 
CsNiC13 [12]) where the reduction reaches % 50% (table 2)$, The effect may be easily 
recognized from an incompatibility of the x,,,,,/x(O) ratios with those of 'gapless' free 
chains, which range [3,37] between 1.45 for S = $ and 1.20 for classical spins. As an 
example, the CsVC13 susceptibility from [22], as measured perpendicular to the chain axis, 
is reproduced in figure 2, where the data have been corrected for a core contribution of 
% -1 x cm3 mol-' and an estimated Van-Vleck term of % +2.5 x IO4 cm3 mol-', 
and where a 'bare' exchange, J l k  = -130 K, and g = 1.97, has been used for the ordinate 
and abscissa scales. Obviously, the depression must be related to the presence of inter- 
chain magnetic comelations above TN, and in the case of a strongly fluctuating ordered 
state, as for CsVC13, it appears from the susceptibility that the incipient order in quasi-ID 
antiferromagnets is heralded by precursors of zero-point fluctuation. 

Wben IJ ' /JI  decreases to zero, the growing depression below the free-chain curve 
in figure 2 implies a final discontinuity in the low-temperature susceptibility immediately 
above TN indicating that the strongly fluctuating ordered state fundamentally differs from 
the free-chain disordered ground state, in spite of the decay of the ordered magnetic 

t Though x(0 )  is exactly known [37] for S = 4 and classical spin chains only, similar non-zero values are 
expected for any half-integer S. whereas for S = 1 a singlet ground state with a Haldane excitation gap [33] of 
;~0.4112JI implies ~(0) = O .  
i For ule compound KCuF3 from table 2, the entire low-temperahue susceptibility [91 is masked by paramagnetic 
contributions. 
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0.101 

0.02 ] I  J ' = O  

0 1 2 3 
0.00 

* .. 
0 c'* 

0 0.2 0.4 0.6 0.8 1 .o 
kT / (S(S+l)lJI) 

Figure 2. Expected behaviour of the perpendicular and p d e l  static susceptibilities below 
TN (dotted) and their continuation above TN (broken) as lJ ' /J l  in quasi-IO antiferromagnets 
approaches zero, quantitatively based on rehrions for leagonal S = $ systems. The crosses 
represent d s a  [22] from hexagonal CsVCli above TN: they are corrected for core and Van- 
Vleck contributions and plolted for J l k  = -130 K and g = 1.97, An overview of the S = $ 
freechain curve (J'  = 0) qppears in the inset. 

moment. This can be understood from the fact that long-range magnetic order in free 
chains is destroyed [32] by 'topological soliton' excitations (i.e. domain walls) rather 
than by collective magnons. Close to the [ J ' / J [  = 0 limit, the expected susceptibility 
curve bears a marked resemblance to that shown by singlet ground-state systems, such as 
quantum antiferromagnetic dimers or free S = 1 (Haldane) chains, the final discontinuity 
being reminiscent of the closing of the singlet-triplet gap in dimerized quantum spin chains 
becoming uniform [38]. By analogy, one might conclude that, as J' + 0, the magnetic 
ground state increasingly behaves like a singlet with a decreasing finite excitation gap. 

As the ground state of quasi-ID antiferromagnets deviates more and more from the 
ordered state underlying the linearized spin-wave Hamiltonian (2). the emergence of new 
excitations, lost in the Holstein-Primakoff treatment, is a possibility to be considered. The 
resemblance to a singlet state with a finite excitation energy in particular suggests that, as 
for the case of weakly coupled S = 1 chains [3 I], longitudinal gap modes might appear in 
addition to the conventional transverse spin waves. 

5. Conclusions 

In conclusion, spin-wave theory is seen to provide an adequate quantitative description of the 
zero-point spin reduction in quasi-ID half-integer-spin antiferromagnets when 'kinematical 
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interactions' are taken into account in the manner of Ishikawa and Oguchi [2]. The present 
analytical treatment should facilitate the application for the experimentalist, and has already 
proved useful in confirming a substantial covalency reduction in the chain chalcogenide 
TlFeS2. However, further data on ionic systems (such as an error bound on the CsVC13 
magnetic moment or a spin-wave determination of J ' / J  and D / J  for KzFeFS) would be 
worth collecting to strengthen the case. 

A marginal but possibly significant deviation is found for the integer-spin system 
CsNiC13. While the exchange ratio I J ' / J  I = 1 . 7 ~  IO-* reasonably accounts for the observed 
spread of inter-chain magnon energies, it leaves 16(4)% of the measured spin reduction to be 
explained by covalency, rather than the 610% typical of the other halides. Corroborating 
the known failure of standard spin-wave theory for the inter-chain excitations, this may 
point to additional quantum fluctuations related to the occurrence of a singlet ground state 
in free S = 1 chains. A theoretical estimate of this effect would be useful. 

Finally, the qualitative behaviour of the magnetic susceptibility expected from spin-wave 
theory for quasi-ID antiferromagnets is noted to conform with experiment. For decreasing 
inter-chain coupling, a growing depression below the susceptibility of free half-integer-spin 
chains at low temperatures implies that the fluctuating magnetic ground state increasingly 
resembles a singlet separated from other states by an energy gap. 
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